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Assuming Ay <A ,let us consider the rectangle lxl shy . ¥ l <1, When lxl <h,
we can differentiate(5.1) any number of times with respect to both variables, hence

@fizjmn, =0,  Bugliz)=n, =0
is true,
From this we infer, using the generalized condition of orthogonality of (1, 9) from (5],
that ¢y cos Ay by = 0, i.e. ¢ =0 (k =1, 2,...). So that a nontrivial expansion
of a zero is impossible, and this completes the proot ot uniqueness,
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A study is made of the rolling of an elastic cylinder on an elastic foundation, The defor-
mation of the bodies precludes the pure rolling of one body on the other, The rolling is
accompanied by sliding. Some recent investigations contain results concerning the rol-
ling of bodies with identical elastic properties, The earliest investigations in this area
were conducted by Petrov [1] and Reynolds [2], This problem was later studied by Fromm
[3], who confines himself to the application of Hertz's results [4]. The resistance to roll-
ing of a rigid body on an elastic and inelastic foundation was also investigated by Ishlin-
skii [5], The papers of Glagolev [6] and Desoyer [7] contain the general equations for the
investigation of the rolling resistance of elastic bodies with different elastic constants,
Glagolev solved this problem for bodies with identical elastic constants and examined
the limiting case, Desoyer obtained a singular integral equation for the general case and
examined this limiting case,

1, Herein, no restrictions are imposed on the elastic properties of the cylinder or the
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foundation, It is assumed that the contact region consists of a slipping region and a stick-
ing region, The rolling process is assumed to be quasi-static and elastic,

Assume that the contact line is small in comparison
53 with the body measurements and that surface irregularities
are sufficiently small so that the bodies may be considered
‘ smooth, The scheme under study is shown in Fig,1, The
P) cylinder is acted upon by a moment /, a vertical force
2 P and a horizontal force /. The force J is equal and

4 opposite in direction to the traction at the foundation
2l b z  surface Ny , in the direction of motion, Also acting on
the cylinder is the normal reaction of the foundation
AR =P, The ends of the line of contact will be denoted
by @ and b, Since the length of the contact line is small in comparison with the dimen-
tions of the bodies, the boundary conditions may be taken along the straight line /=0
and the two bodies may be replaced by two half-planes, All quantities pertaining to the
lower half-plane will be designated with the subscript 1 while those pertaining to the
upper half-plane will be designated by the subscript 2.

Suppose that the contact line of the lower half-plane is acted upon by a normal load
Y71 () = — P (r) and a tangential load X ; (z) = 7 (z). Correspondingly, the
upper half-plane is acted upon by Y* o (z) = — P (2) and X'y (2) = T (2). we
assume that the loads and torques vanish at infinity, The boundary conditions for our
problem then are:

1) the normal and tangential loads are equal along the entire contact line

Fig, 1

Y (z)= Yo' (2), X (2) = X2 (2) (1.1)
2) the normal displacements along the contact line are interrelated by
vy (7)) — vt (2) = Y, 22 /R (1.2)

3) the contact line is broken down into a slipping region (-, ¢) and a sticking
region (C, b) . In these regions, the boundary conditions are
T (z) = v P (2), um(2) = uy*(2) (1.3)
where V is the coefficient of Coulomb friction,

Let us formulate the problem with the above stated boundary conditions,

Let &, (2) be a piecewise analytic function defined in the lower half-plane. This
function may be continued along the unloaded region of the Xx-axis to the upper half-
plane, Similarly, we define the function Qa(z) in the upper half-plane, It is known
that the stresses and displacements are related to the functions ‘51(2) and @a(z) by the
following relations [8]:

Yyi(z j— i Xy (2) = Dy (2) — Oy (2) + (2 — 2) Dy (2) (1.4)
(k=1,2)
2pi (0 (2) + vy (2)) = Qe (2) + B (2) — (2 —2) D () (1.5)
Satisfying (1, 1), we can prove that
@, (z) = — ®q (2) (1.6)

From (1, 2) and (1, 3), we obtain the relation for determining @1(2) . In terms of & (2),
(1. 2) takes the form
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ka®y" (2) — By @y () + 5@y~ (2) — B2 (2) = iz / R (1.7)
=X 1 =X 1
(kl 4 dpg fa T 4u1>

This condition holds over the entire contact length, In each of the regions of sticking
and slipping there is an additional condition for the determination of @1(2) . These
conditions take the form

ky @,* (2) + k@, (7) + ks @, (2) + k@, () =0 (1.8)
VHIDF @) — (v =)D (@) =+ )D(2) — (v— i) D, (z) (1.9)

Thus, over the entire contact region there are two conditions for each of functions
Ql(z) and 51(2) to be determined, We have thus obtained the relations with piece-
wise constant coefficients for determining Ql(g) and 51(2) .

2, It is known that this homogeneous problem with piecewise constant coefficients is
equivalent to a problem in the theory of linear differential equations, For the given con-
ditions on the contact boundary, we can construct a differential equation of the Fuchsian
type with three singular points, Let us transform the complex 2 plane into the complex
w plane in such a way that the points ¢ ,C, b will correspond to 0, 1 and «, respec-
tively, in the 1 plane, Gauss' hypergeometric equation takes the form [9]

w(l—w) O W)+ A +o/n— 2w W~ (+ BN, w =0

Fathk g _Llnﬁ) (2.1)
‘V(kg—-—kl), 2n kg

(q) =arctg
Particular solutions of this equation in the neighborhood of the singular point ) = 0

B o) = F Ofs— by, Yo+ By 10/ 7 0) (2.2)

Vow) =w™" F(y—q@/n— iy Yo—@/n+ify, 1 —¢/n, w)
In the neighborhood of the singular point =1, particular solutions of (2, 1) are given

by Ur@) =F @y — iy, Yot By 1—@/m 1—w) 2.3
Viw)= {1 —w)"F (o +¢/n — if,Ya+o/n+ ifi;1 +(P/“a 1 —w
In the neighborhood of the point at infinity, the solutions of (2, 1) take the form

' 1 1/4—19% 1_ . 1 P . . 1 (2'4)
Um(w)=(5') F(?—’Bl' -2——7—1—_1[31' 1 =2y, Z_U—) c—bz+ta
" T etaz—5b

Vo) = (2) " F (348 - Ly, 1428, -)

Utilizing relations (1, 7) and (1, 9), let us construct two linearly independent particular
solutions of the homogeneous problem above for the functions () and 51( w) in the
region of slipping

. N .
O, (w) = — i [k (vz-lEkll)—f- k:)(v ] (Uo (w)— :’_}_ : Ve (w)) (2.5)
_ . NP
Ot @) = — LRGP Wow) Vo)
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ifha(v-1- ) — by (v — )]

R T

(Uo (w) — Vo (w))

(2.5)
T2 ikt D~k (v—i)] (
(Dl (w) - 3(/‘»’1 + ke) U (w) VU (w))

By the method of undetermined coefficients, we can obtain the pamcula_g solutions to
the nonhomogeneous problem (1,7) to (1, 9) for the functions i‘l(w) and él(w) . These
solutions take the form . .

iz 3 o -3z N
G)l ( )* JR k;%—kz) 9 ®1 (z)"" Zﬁ(kl—{-kg) (2 7)

In accordance with the original formutation of the problem, the sotution to (1, 7) 10

(1, 9) must be such that it vanishes for &= ,and for large 3] the solution must be of

the form ®1(3)=“X;;Y+0(1): D, (z) = — ;;:Y+o(%} (2.8)

z2

where (¥, X) is the resultant vector of the external loading,

It is known that if &, (&) is a solution, then B(2) ¢, (2) is also a solution to the
problem, To obtain a solution satisfying the previously listed conditions, we seek this
solution in the form

(Dx (z) = Pl (z) @, (z) + Ql (z) (b)? (z) + (st (2)
D, (2) = Py (2) D (2) + Q; (2) B2 (2) + D (2) (2.9)

In(2,9), P1(2) and §1(Z) are first degree polynomials with undetermined coeffici-
ents, Upon determination of the coefficients for & (2) and @(2) , the relations in

(2. 9) take the form (2.10)
N 1 D w (Ve Vo(il') Uo’_’ Up ()
O () = — s lrar 09 (7 — =) T —v (% — o) h ]+
+ ir

2R (k1 1 ko)
N 1 b N (Vo A Va(x) gi___ Uo ()
O, (-L)~—m[m(v+‘)(vg ?) (7 — <) Uej
iz
T 2R(ki+ k)
e A (B Ve A @ (U 3\ Ue@
o, (“)‘_2R(kl+kg){|m (v—1) (Vo ) Vo v (Uo ) Uo ]+
L=
T 2R (ki ko)
o 1 7] Vo(@) (U \Ue(®)
D () = — T |51 v+0) (7 —2) 5 = (=) 5 |-
ir
IR (ky - k)

(D=ke(v+i)—kr(v—i), |D|=V+(ka—F¥ T (ks + o)

From these transformations we obtain two equations for the determination of the sin-
gular points @, and , These equations take the form (2.11)

i et ==Y, (G (e - _x
Rk 4-ka) \ Vo2 2V, ’ Ry +lay [ \U2 — 20U, Vot 2Ve/|
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where U,, Uy, Uy, V,, V§, V,'' are coefficients in the expansion of the func-
tions Uy(z) and 'V, (z) for large | 2] .

To obtain the functions $;(Z) and 61 (2) in the region of sticking, we make use of
the analytic continuation of U4(2) and [5(2) beyond the region of convergence of the
series, The formulas for the analytic continuation of UO(Z) and Ié(z ) are given by [9]

Uy (2) = Buet™elU (2) + BraeT 8V, (2)
Vo (2) = BueFmi (=a-DT, (2) + Baae T (+-3-UV () (2.12)
(=1~ i, B=a+if, v=1+0/m

By = rd+o/m)rd+2i8y) B =
U= BT (et BT (et @/ iB) © PP (2.13)

By, — (= @/n BT — /M T 4 2B, Baa = oy
28T Yo+ i) T (/s — @/ 7+ iB1) ’
Thus, we can write the solution to the problem over the entire contact region, The
loading components for the contact region are given by :
1) in the slipping region

1 Vo Vo (x Y Vo Vo (%)
P@=— g5 (m—2) 22, T@=—z (- z) 538 (2.44)
2) in the sticking region
P@) = —smv (v 72) BnU (@) + BV o (2))
. v s (2.15)
T(@)=— SRV [(V—@_ﬂ) (B21U o () + BazV oo (7)) —
— (Z% — =) (Buulo () + BusV oo (2))

The third equation for the determination of the ends of the contact region and of the
division point between the two contact zones is obtained from the requirement that the

stresses at & = =@ be bounded,

8, Let us consider the case of particular values of the elastic constants, For a perti-
cular set of elastic constants, we have %y =/#z=/%, 81 =0 and ¢ = 7, We seek a solu-
tion having an integrable singularity at 2 = ~@ and bounded at 2 =C and b, In that
case, the parameters in Gauss' equation willbex =4, B =%, and Y=§- while Gauss'
equation takes the form

w(l —w) O (W) + (s — 2w7h) O W) -7, D) =0 (3.1)
Solutions which are analytic in the neighborhoods of the singular points p=1, 0 and
© are given by
Uy W) = F (Y3 Y2 ¥2» w) = w™ arcsin ()"
Vo) =w's F (0,0, Yy w) = wh
Uy @) =F (/o Y Yo 4 —w) = w 3.2)
Viw)=(1 —w)"F (1, 1, 35, 1 —w)=w"arccos(w)"

Uoo () = Veo (w) = whF (Y, 0, 1, wi) = wh
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The solution of our problem will be sought in the same form as in the general case,
In the slipping region, the limiting forms of the functions $,(2) and ®;(2) are given

b x To .
7 = gl 0 ()5 4o (52

Dpto(w) = Z;?T:Ll'?i (v+1i) (% ) R (Q" — r) szix) — i.rl oY

Let us now write the expressions for the desired functions in the sticking region, taking
into account the change occurring in the functions /,(w) and [5(w) upon passing the
point =1, The function [3(w) is defined everywhere so that there is no need for any
continuation, The function [/5(w) takes the following form on the two sides of the cut
along the real axis from 1 to®:

UoT (w) = w™ arc cos (¥ "™ w — 1)) (3.4)

We can now write the expressions for the desired functions in the sticking region
) e : LAY
O, (-’)'—-m[i‘( )( 0>w'/’+

U : .
+v ((7;2' ,_FT) arc cos (eF: =i (w — 1)) wh 4 ix]

oo+ & ) 3.
Ty (2) = g | £ 10+ (75— ) w + (3:5)
Ud s U
+ V(E‘?@”"Z/T,) arc cos (eF"2 i (w — 1)/)w‘/=—zx}
The formulas for the load components are :
1) in the slipping region
) Vo T
P(0) =S5t (7a—)
_ vQ(x) (Vo F __fe—b w+a“1/’
T'(x) = 5px (T’&‘“V;) Q(z)= <c+ ax ——b) (3.6)
2) in the sticking region _
o x

u@:%%_%}_% 7) s Y=

Here U, U,, V. and V,’ are coefficients in the expansion of the functions U, (@)
and V, (z) for large |2| . Eas. (2.11) for the determination of the end points and the
division point in the contact region become

n(a+b)(3b——a)
T6RR —Y (3.8)

felia+ 8" 0 —o(c + a + 45) [Arsh (2= a)"”]“’ _

— 2(a+b)(b—c) [Arsh (’:;‘;) /'] }-_—X

Upon determining ¥, and /4’ in the formula for the normal load we obtain
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1 fb—a\""(a+b
P() = 5 (s3) (- +7) (3.9
In order that the solution be bounded at the point 2 = ~q,set @ = b, Then(3,9)
becomes P(e)= g V@ =2 (3.10)

The formula for determining the ends of the contact region takes the form

o=V RP = (3.41)

The last two formulas coincide with the results of Glagolev [6].
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