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Assuming h <F, , let us consider the rectangle 1 x 1 shl , 1 r/l s 1 . When 1 x 1 <h. 

we can differentiate (5.1) any number of times with respect to both variables, hence 

is true. 
From this we infer, using the generalized condition of orthogonality of (1.9) from [5]. 

that cg cos h, h, = 0, i.e. ck = 0 (k = 1, 2,. . .) . So that a nontrivial expansion 

of a zero is impossible, and this completes the proor of uniqueness. 
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(Recived April 25, 1967) 

A study is made of the rolling of an elastic cylinder on an elastic foundation. The deforh 

mation of the bodies precludes the pure rolling of one body on the other. The rolling is 

accompanied by sliding. Some recent investigations contain results concerning the rol- 
ling of bodies with identical elastic properties. The earliest investigations in this area 
were conducted by Petrov p] and Reynolds pj. This problem was later studied by Fromm 

133, who confines himself to the application of Hertz’s results [4]. The resistance to roll- 

ing of a rigid body on an elastic and inelastic foundation was also investigated by Ishlin- 
skii [S].The papers of Glagolev @j] and Desoyer p] contain the general equations for the 

investigation of the rolling resistance of elastic bodies with different elastic constants. 
Glagolev solved this problem for bodies with identical elastic constants and examined 
the limidng case. Desoyer obtained a singular integral equadon for the general case and 
examined this limiting case. 

1. Herein, no restrictions are imposed on the elastic properties of the cylinder or the 
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foundation. It is assumed that the contact region consists of a slipping region and a stick- 

ing region. The rolling process is assumed to be quasi-static and elastic. 

G!J+ 

Assume that the contact line is small in comparison 

sz* 
with the body measurements and that surface irregularities 

N 
are sufficiently small so that the bodies may be considered 

Wr 
smooth. The scheme under study is shown in Fig. 1. The 

cylinder is acted upon by a moment M, a vertical force 

3 P P and a horizontal force fl. The force flis equal and 
C opposite in direction to the traction at the foundation 

-aU b x surface Nl , in the direction of motion. Also acting on 

Fig. 1 
the cylinder is the normal reaction of the foundation 
fi =P. The ends of the line of contact will be denoted 

by f2 and b . Since the length of the contact line is small in comparison with the dimen- 
tions of the bodies, the boundary conditions may be taken along the straight line y = 0 
and the two bodies may be replaced by two half-planes. All quantities pertaining to the 
lower half-plane will be designated with the subscript 1 while those pertaining to the 

upper half-plane will be designated by the subscript 2 . 

Suppose that the contact line ,of the lower half-plane is acted upon by a normal load 
)7-ut (2) = - P (z) and a tangential load ,y-?,t (x) = ?’ (x). Correspondingly, the 

upper half-plane is acted upon by Ytlla (x) = - P (z) and X+,s (x) z T (x). We 
assume that the loads and torques vanish at infinity. The boundary conditions for our 

problem then are: 
1) the normal and tangential loads are equal along the entire contact line 

Yvl-(4 = q/a+@), x,1-(4 = x,2+(4 (f.1) 

2) the normal displacements along the contact line are interrelated by 

ur- ‘(x) - vz+ (5) = ‘/z 2 / R (1.2) 
3) the contact line is broken down into a slipping region (-a, c) and a sticking 

region (c , b) . In these regions, the boundary conditions are 

T (z) = v P (z), ul- (z) = u2 + (4 0.3) 

where v is the coefficient of Coulomb friction. 
Let us formulate the problem with the above stated boundary conditions. 

Let @l(Z) be a piecewise analytic function defined in the lower half-plane. This 

function may be continued along the unloaded region of the X-axis to the upper half- 
plane. Similarly, we define the function @a(.?) in the upper half-plane. It is known 

that the stresses and displacements are related to the functions @l(z) and $(Z) by the 

following relations [8] : 
-- 

Y,];(Z ,-ix,,(z)=a)*(z)-~a)h.(i)+(z -z)cD)k’(z) (1.4) 
(k-1.2) 

_- 
2p, (u,:’ (2) + iQ’(Z)) = x@)k (2) + cq, G> - (2 - 2) a,’ (2) (4.5) 

Satisfying (1. l), we can prove that 

@r(z) = -as (4 (1.6) 

From (1.2) and (1.3), we obtain the relation for determining %(Z) . In terms of @l(Z), 
(1.2) takes the form 
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WA+ (z) - kl6’ (5) + kaq- (z) -k&i&; (2) = iz / R (1.7) 

( 
kl=&+_?-, 

4l.h 4pa 
k.&?.++ 

W-1 ) 

This condition holds over the entire contact length. In each of the regions of sticking 

and slipping there is an additional condition for the determination of P,(Z) . These 
conditions take the form 

k, (D1+ (2) + I+,+ (z) + k,&- (2) + k@,- (z) = 0 (1.8) 

(Y + i) a++ (z) - (v - i) q+ (z) = (v + i) q- (z) - (Y - i) q- (5) (1.9) 
Thus, over the entire contact region there are two conditions for each of functions 

@l(Z) and m,(Z) to be determined. We have thus obtained the relations with piece- 
wise constant coefficients for determining @,( $) and 5, (z) . 

2. It is known that this homogeneous problem with piecewise constant coefficients is 
equivalent to a problem in the theory of linear differential equations. For the given con- 

ditions on the contact boundary, we can construct a differential equation of the Fuchsian 

type with three singular points. Let us transform the complex 2 plane into the complex 
w plane in such a way that the points a, c , b will correspond to 0, 1 and 0~. respec- 
tively, in the U.J plane. Gauss’ hypergeometric equation takes the form [9] 

10 (1 - w) 01” (UJ) + (1 + cp / 3.c - 2w) @)I’ (w) - (‘/a + fJ1”) q (w) = 0 

( 
‘cpqctg kQ+kl p= i 

v&---i) 
z1nP 

1 
(2.1) 

ka 

Particular solutions of this equation in the neighborhood of the singular point w = 0 

are given by Us(w) = F (l/s - zpi, ‘1s + ibr, 1 + cp / n, w) (2.2) 

V, (w) = w-+’ F (‘/z - cp / a=c - h ‘Ia - cp I n + i#L, 1 - ‘P I a, w) 
In the neighborhood of the singular point w = 1 , particular solutions of (2.1) are given 

bY ui (4 = F (l/s - $1, l/a + iSi, 1 - cp / nTI, 1 - 4 
(2.3) 

v,(w) = (1 -wPixF(V,+cp/~-- %tl/a+~/n+ q-h,1 +cp/n, 1 -w) 

In the neighborhood of the point at infinity, the solutions of (2.1) take the form 

u, (w) = (;i”“‘F (; - ipr, + - ‘- Q1* 1 -22ip,, L) (2.4) 

V,(w) = (;)“*+ie’ F (; + Q1, ;- 5 + if&, 1 + 2&,; ;) 

c-b z +a 

w = - 
c+az-b 

Utilizing relations (1.7) and (1.9). let us construct two linearly independent particular 
solutions of the homogeneous problem above for the functions 4,(w) and m,(w) in the 
region of slipping 

ul)1” (w) = - i Ihn(VZS(~~;~;j(V-i)l (,y,tw) - s v. cw)j 

&'l(W) = _ i Iky&~l!p (U,(w)- V,(w)) 

(2.5) 
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By the method of undetermined coefficients, we can obtain the particulaJ solutions to 

the nonhomogeneous problem (I, 7) to (1.9) for the functions @I (w ) and &, (w ) _ These 
solutions take the form 

In accordance with the original formulation of the problem the solution to (1.7) to 

(1,9) must be such that it vanishes forl=a , and for large 1 I 2 the solution must be of 

where (Y,x) is the resultant vector of the external loading, 

It is known that if *l(Z) is a solution, then e(z) #l(z) is also a solution to the 

problem. To obtain a solution satisfying the previously listed conditions, we seek this 
solution in the form 

(2.9) 

In (2. Q), PI(Z) and gl[Z) are first degree polynomials with undetermined coeffici- 

ents. Upon determination of the coefficients for_&(Z) and &(Z) , the relations in 
(2.9) take the form (2AU) 

- 2R (kl + kz) 

From these transformations we obtain two equations fur the determination of the sin- 

gular points a, c and b . These equations take the form (2.11) 
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where U,! Us’, Us”, v,, vi, vs” are coefficients in the expansion of the func- 

tions U,(z) and ‘v,, (z) for large 12 1 . 
To obtain the functions @l(Z) and m,(Z) in the region of sticking, we make use of 

the analytic continuation of u,(Z) and V,(Z) beyond the region of convergence of the 

series. The formulas for the analytic continuation of u,(Z) and v&Z) are given by [9] 

U. (2) = Slle*+Wm (2) + ~&+Vm (z) 

v. (2) = [3,,ew (~-=-Woo (2) + p&w (~-~-w~ (2) (2.12) 

(u = ‘1% - $1, P = l/z + @l, T = 1 -t cp / 4 

IL = 

I’ (1 + cp / n) 1‘ (1 + Wl) 

w&r (l/z + 4%) r (l/z + cp /n + 4%) ’ 
PI2 = PI1 

(2.13) 
pa1 = (l/z- cp / n + &I r (1 - cp / 4 r (1 + 2431) 

24w (ii2 -t iis) r (*ia - q I 51 + ipd ’ 
I322 = rr2, 

Thus, we can write the solution to the problem over the entire contact region. The 

loading components for the contact region are given by : 
1) in the slipping region 

P (x) = - j& ($-x) F, T(s)=-& (+z)y (2.14) 

2) in the sticking region 

&UC9 (z) + P22Vco (5)) 

(2.15) 

The third equation for the determination of the ends of the contact region and of the 
division point between the two contact zones is obtained from the requirement that the 

stresses at Z = -a be bounded. 

3. Let us consider the case of particular values of the elastic constants. For a perti- 

cular set of elastic constants, we have kl = k2 = k , B1 = 0 and rp = fll. We seek a solu- 

tion having an integrable singularity at Z = -a and bounded at z = c and b . In that 

case, the parameters in Gauss’ equation will be a = f , B = i , and y = g while Gauss’ 
equation takes the form 

w (1 - W) 01” (W-“*) + (“/2 - 2&l*) @); (&la) - l/d @i (W) = 0 (3.1) 

Solutions which are analytic in the neighborhoods of the singular points w = 1 , 0 and 
0~ are given by 

U, (w) = F (1/2, 1/2, 3/,, w) = w-‘/a arc sin (w)“s 

V, (to) = w+ F (0, 0, 1/2, w) = w-‘/s 
U, (w) = F (1/2, l/1, 1/2, 1 - w) = w-‘/s 

V,(w) = (i- w>“~F (1, 1, 3j2, I- w) = w”” arc cos (w>I” 

U,(w) = V,(w) = w-‘llF 
( 
‘/a, 0, 1, &) = w-‘la 

(3.2) 
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The solution of our problem will be sought in the same form as in t&e general case. 
In the slipping region, the limiting forms of the functions @l(z) and @l(Z) are glven 

Let us now write the expressions for the desired functions in the sticking region, taking 

into account the change occurring in the functions u,(w) and I/,&J) upon passing the 
point w = 1 . The function G(w) is defined everywhere so that there is no need for any 
continuation, The function u,(w) takes the following form on the two sides of the cut 

along the real axis from 1 to 03: 

u,t” (w) = w-‘ip arc c*s (8 ‘A +(t(> - $)1”) (3.4) 

We can now write the expressions for the desired functions in the sticking region 

(I,,* (:I-) -- -& [Lt: i (y - i) ( $A - lT) w-‘/a + 

+$&-) - arc cos (eF’/z Xi (2.9 - j )1/“) w-‘In + is 
1 

_ @I’ (5) = 4j& [* i (y + i) ($-- k) w-‘/2 + 

+ Y ($ - &) arc cos (e7’/1 xi (W - 1)““) w-‘/r - i,r] 

The formulas for the load components are: 
lf in the slipping region 

T (z) = 

P (1) = Eg (!g) 

2) in the sticking region 

P (z) = 

T(x) = 

f3.5) 

(3.6) 

(3.7) 

Here lr,, uo’, V, and V,’ are coefficients in the expansion of the functions 0, (2) 

and i’, (3) for large 1~ 1 , Eqs. (2.11) for the determination of the end points and the 

division point in the contact region become 

Jf (a + b) (3b - a) 
i6Rk 

= _ y (3.8) 

-?- {(a + &p (b - cf%(c + n + 4b) [Arsh ($$“j-’ - 41(x- 

- 2 (a + b)(b - c) [A-t& ($+)-‘1-3 = X 

Upon determining f& and &’ in the foimula for the normal load we obtain 
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P(x) = &($gyqk) (3.9) 
In order that the solution be bounded at the point Z = -a, set a = b . Then (3.9) 

becomes P (x) = (3.10) 

The formula for determining. the ends of the contact region takes the form 

a= 1/ RP xfl 
w 

The last two formulas coincide with the results of Glagolev [S]. 
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